Wednesday, July 29, 2015

Battery drain test on anniversary gift clock

Last month, on June 2, 2015, I celebrated working for Hewlett-Packard/Agilent Technologies/Keysight Technologies for 35 years. During the earlier times of my career, on significant anniversaries such as 10 years or 20 years, employees could choose from a catalog of gifts to have their contributions to the company recognized. That tradition has been discontinued, but I did select a couple of nice gifts over the years. During my HP days, one gift I selected was a clock with a stand shown here:
I have had that clock for decades and it uses a silver oxide button cell battery (number 371). I have to replace the battery about once per year and wondered if that made sense based on the battery capacity and the current drain the clock presents to the battery. I expected the battery to last longer so I wanted to know if I was purchasing inferior batteries. These 1.5 V batteries are rated for about 34 mA-hours. So I set out to measure the current drain using our N6705B DC Power Analyzer with an N6781A 2-Quadrant Source/Measure Unit for Battery Drain Analysis power module installed. Making the measurement was simple…..making the connections to the tiny, delicate battery connection points was the challenging part. After one or two failed attempts (I was being very careful because I did not want to damage the connections), I solicited the help of my colleague, Paul, who handily came up with a solution (thanks, Paul!). Here is the final setup and a close-up of the connections:


I set the N6781A voltage to 1.5 V and used the N6705B built-in data logger to capture current drawn by the clock for 5 minutes, sampling voltage and current about every 40 us. The clock has a second hand and as expected, the current showed pulses once per second when the second hand moved (see Figure 1). Each current pulse looks like the one shown in Figure 2. There was an underlying 200 nA being drawn in between second-hand movements. All of this data is captured and shown below in Figure 3 showing the full 5 minute datalog along with the amp-hour measurement (0.28 uA-hours) and average current measurement (3.430 uA) between the markers.


Given the average current draw, I can calculate how long I would expect a 34 mA-hour battery to last:

                 34 mAh / 3.430 uA average current = 9912.54 hours = about 1.13 years

This is consistent with me changing the battery about every year, so once again, all makes sense in the world of energy and electronics (whew)! Thanks to the capabilities of the N6705B DC Power Analyzer, I now know the batteries I’m purchasing are lasting the expected time given the current drawn by the clock. How much current is your product drawing from its battery?

Friday, July 24, 2015

“Adaptive Fast Charging” for faster charging of mobile devices

In some of my previous posts I have talked about USB power delivery 2.0 providing greater power so that mobile devices can be charged up more quickly with their USB adapters.  A key part of this is these devices are incorporating adaptive fast charging systems to accomplish faster charging. So how does this all work anyway?

Let’s first look at the way existing USB charging work, depicted in Figure 1.


Figure 1: Legacy standard USB charging system

When the mobile device is connected to the USB adapter, the mobile device first determines what kind of USB port it is connected to and how much charging current is available that it will be able to draw in order to recharge its battery. The mobile device then proceeds to internally connect its battery up to the USB power through an internal solid state switch that regulates the charging via the device’s internal battery management. However, a major limitation here is the amount of available current and power. Today’s mobile devices are using larger batteries. Up to 4 Ah batteries are commonly used in smart phones and over 9 Ah capacity batteries are being used in tablets. Even with later updates that increased the charging current to 1.5 amps for a dedicated charging port, this is a small fraction of the charging current and power these larger batteries can handle. As one example, a 9 Ah battery having a 1C recommended maximum charging rate equates to a 9 amp charging current. This requires overnight in order to significantly recharge the battery using standard USB charging.

The shortcomings of legacy USB for battery charging purposes has been well recognized and the USB Power Delivery 2.0 specification has been released to increase the amount of power available to as much as 100 watts. This is accomplished by greater voltage, up to 20 volts, and greater current, up to 5 amps. For a mobile device incorporating this, together with an adaptive fast charging system, is able to charge its battery in much less time. This set up is depicted in Figure 2.



Figure 2: USB adaptive fast charging system

With adaptive fast charging, when the mobile device is connected to the USB adapter, after determining that it has compatible fast charging capabilities, it then negotiates for higher voltage and power. After the negotiation the adapter then increases its output accordingly. A key thing here is the mobile device will typically incorporate DC/DC power conversion in its battery management system. Here it will efficiently convert the adapter’s higher voltage charging power into greater charging current at a voltage level comparable to the mobile device’s battery voltage, to achieve much faster charging. Now you will be able to recharge your device over lunch instead of overnight!


Wednesday, July 15, 2015

Optimizing the performance of the zero-burden battery run-down test setup

Two years ago I added a post here to “Watt’s Up?” titled:  “Zero-burden ammeter improves battery run-down and charge management testing of battery-powered devices” (click here to review). In this post I talk about how our N6781A 20V, 3A 20W SMU (and now our N6785A 20V, 8A, 80W as well) can be used in a zero-burden ammeter mode to provide accurate current measurement without introducing any voltage drop. Together with the independent DVM voltage measurement input they can be used to simultaneously log the voltage and current when performing a battery run-down test on a battery powered device. This is a very useful test to perform for gaining valuable insights on evaluating and optimizing battery life. This can also be used to evaluate the charging process as well, when using rechargeable batteries. The key thing is zero-burden current measurement is critical for obtaining accurate results as impedance and corresponding voltage drop when using a current shunt influences test results. For reference the N678xA SMUs are used in either the N6705B DC Power Analyzer mainframe or N6700 series Modular Power System mainframe.
There are a few considerations for getting optimum performance when using the N678xA SMU’s in zero-burden current measurement mode. The primary one is the way the wiring is set up between the DUT, its battery, and the N678xA SMU. In Figure 1 below I rearranged the diagram depicting the setup in my original blog posting to better illustrate the actual physical setup for optimum performance.

Figure 1: Battery run-down setup for optimum performance
Note that this makes things practical from the perspective that the DUT and its battery do not have to be located right at the N678xA SMU.  However it is important that the DUT and battery need to be kept close together in order to minimize wiring length and associated impedance between them. Not only does the wiring contribute resistance, but its inductance can prevent operating the N678xA at a higher bandwidth setting for improved transient voltage response. The reason for this is illustrated in Figure 2.


Figure 2: Load impedance seen across N678xA SMU output for battery run-down setup
The load impedance the N678xA SMU sees across its output is the summation of the series connection of the DUT’s battery input port (primarily capacitive), the battery (series resistance and capacitance), and the jumper wire between the DUT and battery (inductive). The N678xA SMUs have multiple bandwidth compensation modes. They can be operated in their default low bandwidth mode, which provides stable operation for most any load impedance condition. However to get the most optimum voltage transient response it is better to operate N678xA SMUs in one of its higher bandwidth settings. In order to operate in one of the higher bandwidth settings, the N678xA SMUs need to see primarily capacitive loading across its remote sense point for fast and stable operation. This means the jumper wire between the DUT and battery must be kept short to minimize its inductance. Often this is all that is needed. If this is not enough then adding a small capacitor of around 10 microfarads, across the remote sense point, will provide sufficient capacitive loading for fast and stable operation. Additional things that should be done include:
  • Place remote sense connections as close to the DUT and battery as practical
  • Use twisted pair wiring; one pair for the force leads and a second pair for the remote sense leads, for the connections from the N678xA SMU to the DUT and its battery


By following these best practices you will get the optimum performance from your battery run-down test setup!

Tuesday, June 30, 2015

Using User Defined Statuses on the APS

Hi Everyone,

I wanted to talk about a feature in our Advanced Power Supply family (APS from here on out)  that not too many people know about.  The APS features two user defined statuses in the Operation Status group.  Here is a rundown of all the entries in the group:


You can see that bits 7 and 8 are User1 and User2.

Using the advanced triggering system for the APS you can define what conditions will trigger a change in these two statuses.  The N7906A Power Assistant Software (download link) has a very handy graphical way to set up the trigger.   As an example, let's say that I wanted to change the user defined status when the voltage exceeds 1 V and the unit goes into positive current limit status.  Using the Power Assistant Software I would whip up the following:


After I draw out my trigger expression, I can either download it to my APS or I can click the "SCPI to Clipboard" button on the top of the page.  If I hit that button now and then hit paste here, I get:

:SENSe:THReshold1:FUNCtion VOLTage
:SENSe:THReshold1:VOLTage 1
:SENSe:THReshold1:OPERation GT
:SYSTem:SIGNal:DEFine EXPRession1,"Thr1 AND CL+"
:STATus:OPERation:USER1:SOURce EXPRession1

I can just copy this code into my program.  It's a pretty convenient.

I think the big question is: What can you do with this?  The answer is: whatever you want.  It's user defined so you can use it in whatever way you see fit.  If you want to check if the current exceeds a certain threshold you don't want to do a bunch of measure commands in loop, you can define that as your trigger and then just check the Operation Status Group (using the STAT:OPER? or STAT:OPER:COND? queries). 

I think that the most powerful thing that you can do with this is set up a SRQ handler to act when the user statuses change.  This is actually a project that I am working on presently so I have not implemented this just yet (but I will in the near future).   When I do, I will definitely write a blog post about it though!  I wanted to get the word out about this because even I did not automatically think about this when faced with a issue that just screamed to use this.  

Thanks for reading and stay tuned for a future installment on this topic! 

  




Friday, June 19, 2015

How does your product react to a power line disturbance?

Power line disturbances can occur anywhere at any time. Your product can be exposed to disturbances such as voltage surges, sags, brownouts, cycle dropouts, or transients. If you are involved in the design, manufacture, or analysis of a power conversion product or circuit, you are interested in how your product reacts to power line disturbances because your product’s reaction will have a direct impact on how satisfied your customers are with the performance of your product. It is therefore critical for you to know how your product will react to power line disturbances. This knowledge comes only from direct measurement of the power line disturbance and the resultant behavior of your product.
Keysight’s IntegraVision power analyzer model PA2201A can allow you to gain quick insight into your product’s power consumption and dynamic behavior when it is exposed to power disturbances.
Next week, on Thursday, June 25, 2015, at 1:00 pm EDT, I will be presenting a live webinar on the topic “Successfully Make Power and AC Line Disturbance Measurements”. To get more information and to register to attend, please click this link: http://electronicdesign.com/webinar/successfully-make-power-and-ac-line-disturbance-measurements

If you are reading this BEFORE the webinar date, I hope you will attend the live presentation next week. If you are reading this AFTER the webinar date, the above link should bring you to a recording of the webinar.

Enjoy!

Tuesday, June 16, 2015

When is it best to use a battery or a power supply for testing my battery powered device?

As I do quite a bit of work with mobile battery powered devices I regularly post articles here on our “Watt’s Up?” blog about aspects on testing and optimizing battery life for these devices. As a matter of fact my posting from two weeks ago is about the webcast I will be doing this Thursday, June 18th: “Optimizing Battery Run and Charge Times of Today’s Mobile Wireless Devices”. That’s just two days away now!

With battery powered devices there are times it makes sense to use the device’s actual battery when performing testing and evaluation work to validate and gain insights on optimizing performance. In particular you will use the battery when performing a battery run-down test, to validate run-time. Providing you have a suitable test setup you can learn quite a few useful things beyond run-time that will give insights on how to better optimize your device’s performance and run-time. I go into a number of details about this in a previous posting of mine: “Zero-burden ammeter improves battery run-down and charge management testing of battery-powered devices”. If you are performing this kind of work you should find this posting useful.

However, there are other times when it makes sense to use a power supply in place of the device’s battery, to power up the device for the purpose of performing additional types of testing and evaluation work for optimizing the device’s performance. One major factor for this is the power supply can be directly set to specific levels which remain fixed for the desired duration. It eliminates the variability and difficulties of trying to do likewise with a battery, if at all possible. In most all instances it is important that the power supply provides the correct characteristics to properly emulate the battery. This includes:
  • Full two-quadrant operation for sourcing and sinking current and power
  • Programmable series resistance to simulate the battery’s ESR

These characteristics are depicted in the V-I graph in figure 1.


Figure 1: Battery emulator power supply output characteristics

Note that quadrant 1 operation is emulating when the battery is providing power to the device while quadrant 2 is emulating when the battery is being charge by the device.


A colleague here very recently had an article published that goes into a number of excellent reasons why and when it is advantageous to use a power supply in place of trying to use the actual battery, “Simulating a Battery with a Power Supply Reaps Benefits”. I believe you will find this to also be a useful reference.

Wednesday, June 3, 2015

Webcast this June 18th: Optimizing Battery Run and Charge Times of Today’s Mobile Wireless Devices

One thing for certain: Technological progress does not stand still for a moment and there is no place where this is any truer than for mobile wireless devices! Smart phones, tablets, and phablets have all but totally replaced yesterday’s mobile phones and other personal portable devices. They provide virtually unlimited information, connectivity, assistance, and all kinds of other capabilities anywhere and at any time.

However, as a consequence of all these greater capabilities and time spent being actively used is battery run time limitations. Battery run time is one of top dissatifiers of mobile device users. To help offset this manufacturers are incorporating considerably larger capacity batteries to get users through their day. I touched upon this several weeks ago with my earlier posting “Two New Keysight Source Measure Units (SMUs) for Battery Powered Device and Functional Test”. We developed higher power versions of our N678xA series SMUs in support of testing and development of these higher power mobile devices.

Ironically, a consequence of higher capacity batteries leads to worsening of another top user dissatifier, and that is battery charging time. Again, technological progress does not stand still! New specifications define higher power delivery over USB, which can be used to charge these mobile devices in less time. I also touched upon this just a few weeks ago with my posting “Updates to USB provide higher power and faster charging”. The power available over USB will no longer be the limiting factor on how long it takes to recharge a mobile device.

I have been doing a good amount of investigative work on these fronts which has lead me to put together a webcast “Optimizing Battery Run and Charge Times of Today’s Mobile Wireless Devices”. Here I will go into details about operation of these mobile devices during use and charging, and subsequent testing to validate and optimize their performance.  If you do development work on mobile devices, or even have a high level of curiosity, you may want to attend my webinar on June 18. Additional details about the webcast and registration are available at: “Click here for accessing webcast registration”. I hope you can make it!