Sunday, March 31, 2013

Watt's Up with Datalogging and Digitizing?

All of our power supplies offer the ability to take an average measurement using either the front panel or the MEAS SCPI commands.  Some of our newer power supplies have some more advanced measurement capabilities.   The two capabilities that we are going to look at today are digitized measurements and datalogging.   Let’s take a short look at each one and then talk about when to use each one.

The digitizer has been in our products for a while now.  With the digitizer, you define three parameters and the measurement uses these parameters to return an array of measurements back to you.  The three parameters are: the number of points, the time interval, and the points offset.  The number of points is pretty simple.  It is the number of measurements that you want to take as well as the size of the array that you are going to read back.  The time interval is the pace of the measurements.  This is also the time between the points in the array.  The points offset is a way that you vary the starting point of the array.  This offset can be negative to return measured points before the trigger or positive to delay the start of the measurement.  The most points that we can measure and the fastest time interval is with our N678xA SMU modules.  These modules have a time interval of 5.12 us and a total number of points of 512 Kpoints (keep in mind that 1 Kpoint is 1,024 points).  This yields a total time of 5.12 us x 512 x 1,024 which yields a result of 2.68 seconds.  So the longest measurement that you can make is 2.68 seconds.  The largest time interval that we can measure is 40,000 seconds.  Setting this with the highest number of points would yield 40,000 s x 512 x 1,024 yields a total acquisition of 20,971,520,000 seconds.  That is 666.83 years! 

The other advanced measurement capability that we are going to talk about is our datalogger.  With the datalogger, you set a total acquisition time and an integration time.  The integration time is the amount of time that the power supply will average measurements.  The measurement system is still running at its maximum digitizing rate but it is averaging those measurements and returning that averaged measurement.  The digitizer on the N6705B DC Power Analyzer also will return the maximum measured value and the minimum measured value of each integration period.  The quickest integration time on the N6705B is 20.48 us.  The only limitation in the amount of data that you can log with the internal datalogger is the file size (the maximum file size is somewhere near 2 gB).  If you want to datalog huge files, you can use the external datalog feature (I wrote another blog post about this) or use our 14585A software where the only limitation is the free space on your hard drive.  The catch on the external datalogger is that that the quickest integration time is 102 us.

So when do you use one over the other?  It is pretty simple.  When you want to make a long term measurement (days, weeks, etc.) at a fast rate you should use the datalogger.  You would use this when you are looking to measure something like long term battery drain.  If you are looking for a more short term, faster measurement you would use the digitizer.  You would use the digitizer to measure something like inrush current. 

These are a few of the great features available in our power supplies.  Please let us know if you have any questions on these features or any of the features of our power supplies.          

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.