Thursday, February 28, 2013

Protect your DUT: use sense leads for overvoltage protection (OVP)

Earlier this week, one of our military customers providing DC power to a very expensive device during test asked about the availability of a special option on one of our power supplies. He wanted the option that changed the location of the overvoltage protection (OVP) sensing terminals from the output terminals of the power supply to the sense terminals of the power supply. Since his device under test (DUT) is located quite a distance away from the power supply, he is using remote sensing to regulate the power supply voltage right at his device under test. (Click here for a post about remote sense.) And since the DUT is very expensive and sensitive to excessive voltage, he needs to protect the input of the DUT from excessive voltage as measured right at the DUT input terminals.

The power supply he is using, an Agilent N6752A installed in an N6700B mainframe, normally uses the output terminals as the sensing location for the overvoltage protection. (Click here for a post that includes a description of OVP.) OVP is used to prevent excessive voltage from being applied to sensitive devices. If the voltage at the output terminals exceeds the OVP setting, the output of the power supply shuts down. Since this customer is very interested in preventing excessive voltage from being applied to his expensive DUT, sensing for an overvoltage condition right at the DUT is important. For the N6752A, Agilent offers a special option (J01) that adds the ability to do OVP sensing with the sense leads. See Figure 1. With the J01 option added to his N6752A, the customer’s DUT is protected against excessive voltage.

You may be wondering why the standard OVP would sense at the output terminals instead of at the sense terminals. For decades, we have been making power supplies that sense OVP at the output terminals. Probably the biggest reason for sensing at the output terminals is because that approach provides more reliable protection than sensing at the sense leads even though it is less accurate. The output terminals are the power-producing terminals. If the sense leads become inadvertently shorted, the voltage at the output terminals would rise uncontrolled beyond the maximum rated output of the power supply. This uncontrolled high voltage could easily damage any device connected to the power supply’s output leads! So sensing for an overvoltage condition at the output terminals actually makes sense. It may not be the most accurate way to protect the DUT, but it is the most reliable given all of the things that can go wrong, such as a wiring error or an internal fault in the power supply.

The J01 option is available for only certain N67xx power modules. It adds the ability to sense for an overvoltage condition on the sense leads. This option does not remove the existing output terminal overvoltage sensing feature; it is in addition to it. Additionally, the J01 option is a tracking OVP option. You set a voltage value that is an offset from the programmed output voltage value. The J01 tracking overvoltage threshold tracks the real-time programming changes to the voltage setting and uses the remote sense leads to monitor the voltage.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.